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The operators S,, cE( and &are introduced here which are obtained from operators S, C 
and A by the substitution of operators Ak (3.6) for the Laplacians. The argument h is left 
out as in (9.3) and (3.3). The load components &and &which appear in (3.7) assume 

the following form after transformations (3.5)-(3.6) are applied to expressions (‘2.3) : 

K,= 
t[ 

J& A.263 - 2 (m - 1) sp] (8, 
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An exact solution is given herein for the mixed axisymmetric problem of elasticity theo- 
ry for an infinite cone. It is assumed that the shear stresses are zero on its whole boundary 

surface 8 = 8r, and the homogeneous conditions for the 

normal stresses and normal dispfacements are separated 

by the circle 6 = 6,, T = 1 (r,8, cp are spherical coor- 

dinates). 

Such problems arise, for example, in determining the 

state of stress of a cone compressed at its tip by a rigid 

cap of the same vertex angle as the cone (Fig. 1). They 
also arise in analyzing the intrusion of a conical die into 
a conical cavity made in an elastic space. The case 

I 
i 

8, = I/% n corresponds to the symmetric indentation of 
a flat circular die into an elastic half-space. 

It is assumed in formulating the problem that the 

Fig. 1 elastic stress energy at the edge of the die and the 



320 13. hl. Nuller 

stresses at the cone tip are bounded. As the solution shows, these conditions imply the 
appearance of a stress field at infinity which is statically equivalent to some axial force 

T. 

I, We take the displacement vector components in the Gutman @I form 

(1.1) 

where G and o are elastic constants, and the function F satisfies the equation 

The conditions on the boundary surface of the cone 0 = 0, are 

,i i?(L, 
1~ a == -- =O ltcr a@ for 0 <r 61 (12) 

1 a”0 1 a@ 
““=~dCjB-f-~y$---J dr 

a trAF) _ f! (1 -s)AF==O for i<r<30 (1.3) 

for O<r< x3 

From the formulation of the problem given above, as well as from the requirement 
for boundedness of the displacements it results that 

d&) _I O[(J -- T)E’ ‘J for r + i-“-O, 8 = 6, (e, > 0) (4.5) 

2f0 : : O[(r - I)‘] for J‘ -+ 1 -+ 0, 0 = or {E2 > 0) (1.6) 

F ~=: O(r) for I’ --+ 0: F 1-- Q(S) for r 4 U v.71 

Let us set F = r*F, -j- Pa, where J’i and I?; are harmonic functions, and let us apply 
the Mellin transform to (1. Q-(1 4) in the whole domain 0 < 8 < fll. 

Integrating by parts and taking account of condition (1.7), we obtain 

(i.8) 

(1.9) 

(2.10) 

Here z = GOS 0, PJ,,) is the Legendre function of the first kind, the prime denotes 
the derivative with respect to B, and v is a complex parameter found by virtue of the 

condition for the existence of the integrals (1. 8)-(1.10) in the strip 

- 3 < Rev < - 2, r = (Y - 2 -t_ 4ci), tr = I(Y t- l)“- 2(i - 41 

r, = IjY -f- 2y - nji - rr)] 

For 0 = 0, we introduce the functions [‘L] 
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1 co 

a+ (v) = bgr”+%r, s u- (v)= U/+ldr s (1.11) 
0 1 

which are, respectively, regular in the right Re v> - 3 and left Re Y< - 2 half-planes. 

To determine these functions, as well as the functions A(v) and B(Y) from the conditions 

of the boundary (1.2)-(1.4), we form a set of three equations (x1 = cos 6,) 

(2G)-*tPy’(&l(v) + (2G)-‘tP;+,(r,)B(v) = u-(v) 

t[(v + 1)2P,(%) + ct&P,‘(X,)lA(v) + [(v + 2)tlP”+z (II) + tctg %p:+&dl x 
x B (v) = O+(Y) (1.12) 

(v + 2)tPy’(s)A(v) + tzP:+s MB(v) = 0 

Substituting functions in the first equation which have been found from the other two 

A (v) = 
@;+a (21) e+ (v) 

B(v) = - 
(v + 2) rP,’ (51) a+(v) 

LIZ(Y) ' D2 (v) 

we arrive at the Wiener-Hopf equation 

o+(v) = K(V)U_(V) 

K(v) = D?(v)[&(v)]-l 

Dr(v) = - G-‘(4 - o)t(2v + 3) PJ@,;a (zJ 

Dz(v) = d(v + 1)92P” c&+2 (4 - (v + 2) 2h~“‘(~1)~Y+2 (xl)+ 

(1.13) 

(1.14) 

(1.15) 

+ 2(f--a)(2v+3) ctg 6tP.,~~r)P:+s(~~)l (1.16) 

The function D1(v) has six simple zeros independent of 0,: v = 2 - 40, 6. -1, - s/2, 

-2, -3, and the function D2(v) has two simple v = 2-4o,-- 3/2 a 8.1 two multiple v= 
=- 1, -2 zeros independent of 6,. These zeros play an essent,.ir pdrt by generating 

displacements and stresses at the cone vertex and at infinity. The function K(v) is meromor- 

phic, satisfies the evenness condition K(v-3/2)=K(- v-‘/~), and therefore, can befac- 

tored by the method of infinite products in the form 

K(y)= K(-3/3)K-(V)[K+(v)]-‘, K-(V) = - (V -:- 1) (V + 2) [K+(--v-3)1-’ (ia17) 

Here vkr and vkz are zeros of the functions D1(v) and D2(v) located in the right half- 

plane Re v > - 3/2, and numbered to take account of their multiplicity ; 6kl and 

6k, are arbitrary sequences of numbers assuring the convergence of the infinite products. 

The structure of these products is such that the function K+(v) is regular, has no zeros, 

and is positive on the real axis in the right half-plane Re v > - 2 - 1~ (x > 0 and 

x -) 0 for 6, -+ x ), the function K-(v) is regular, has no zeros and is negative on the 

real axis in the left half-plane Re v < - 2. Let us evaluate the function K(- 3/2) and 

let us determine its sign. 

Differentiating the identity 
(~+l)[P,.,,js)--P,,(s)]-=siilOP.,’(s) 
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with respect to v we obtain the recursion formula 

from which we have for q = I/Z by taking into account that [dP,(~)/dv], = _ 1,2 = 0 

ap, (4 
[ 1 av = V=‘[z 

- 4sin OP_,,z (4, [~I~=,!. c= - sin 8P_,,, (2) 

Making use of these equations and the identity P_+_r (5) = P,(I), we obtain 

K (-- Yd = 2 (I_. 6) [p,,,‘(x)]” 

4’ (- ‘/z)(= 
aD2 (v) 

av I V".-'jZ = 4 (5 - 1) P,,* (m) qt (4 + 

(1.20) 

+ (a - ‘Is) sin 01 IPl,2 (~1) P+ (4 -4P_,,, (4 P,,,' (xI)J + 4 (0 - 1) ctg 0~ [P,,; (&I’ 

Let us show that the function K(- 3/2) is strictly positive in the interval 0 < 6, < TC. 

Evidently the functions in its numerator and denominator are continuous, and the latter 

is not zero by virtue of the relationship 

P,,&x) = - 3/ssin0F(r,%, 5fs; 2; sin2 fjiZ)<O, 0 < 6 < x 

Let us assume D,*(-- s/z) = 0 at the point 9r =; flol. Then the expansion 
Co 

at this point contradicts. say, the identity 

B,(O) = 6(i - a)(i - 2o) sin 28P 

Therefore, the function K(- aiz) is continuous and does not vanish in (0, n) . Since 

it is positive at the point 6, = lizn, where 

K(- %) = Gf4n(i - o)j-’ [Pz,~‘ fo)l-2 

it is positive everywhere in (0, n). 
In order to select the sequences ~7~~ and cSk2 and to estimate the growth of the function 

K+(v) at infinity, let us study the distribution of the large zeros vkr and vkr. 
The zeros of the function D,(v) are eigenvalues of the Sturm-Liouville problem for the 

equations (m = 1,2)\ 

(sin By’)’ $ A,sin By = 0, h, = v(v + i), A2 = (v + Z)(v --t- 3) 

with the boundary condition y’ = 0 at 6 = 6,.They are real, the asymptotic representa- 

tion of the positive zeros is 

$2 = 1 + (k + l/1) rce;i + 0 (k-l), i&y = 1Lpi - 2 (&Q = vi?’ + Z/2) (1.21) 

The large zeros of the function D,(v) in the right half-plane lie near the zeros of its 
principal part Da(v). We extract the function D,(V) by using the asymptotic expansion 

p,* (2) = r (21 + 171. + 1) [I? (v + 3/2)]-1 (I/% rt sin 6)-‘~g{cos[(v + r/J 9 

- ‘/*n + ‘/$mnJ + 0 iv”-‘)j (1.22) 

Substituting (1. ‘2’2) into (1. J.6). we obtain 



Contact problem for an elastic infinite cone 323 

where N(v) is the ratio of gamma functions which has no zeros for Rev > - */t 

Da(v) = p sin 20, - cos (2&p) (1.23) 

D,(v)= Da (v) 0 (u-‘) + 2. (5 I- sin (2&p)+ + sin 281+ 

+ & [cos (20114) + sin 201 J - (y (v + 3, [cos (2&p) - sin 2011 [I + CJ(v-l)] (1.21) 
I 

Let (nr - s/2) be a zero of the function DJv), i.e. , 

nksin 28, - cos (28& = 0 (1.25) 

Let us describe a circle Th. of radius hk = 1 nk 1 -l In 1 nk 1 with center at nk. 

By virtue of (1.2 5) we have on this circle 

D3 (nk - “1~ + Ilk@) = ei+ [4Whk2e% sin 281+ 201h,n, sin 201 + 

+ ILk sin 2811 + n:O (hk3) 

Hence, owing to the second member in the brackets min ) D3(rk) 1 = O(ln 1 nk I), and 
max 1 D&k) 1 = O(1) owing to the contents within the braces in (1.24). 

Since ID&k) I > ) Dp(yk) I, the number of zeros for the functions Da(v) and &(v) within 
the circle Tk is identical by the Rouchk theorem, therefore 

ph.2 =n,$+otInk[-l~nI~,$.I), RepkZ>O (1.26) 

For 81# Ve n the number of the first real zeros of the function D,(v) is finite, hence, 
the complex zeros may always be considered large. Following [3], we set nk = ak + & 

and we write (1.25) as the system 

ak sin 2e1= cos (2e1clk) ch (261P,) (1.27) 

pk sin 2e1 = sin (2e1ak) ah (261I3,) (1.28) 

For 0 < 01 < 1/&, ak > 0 and pk > 0 we obtain cos (2&C+), > 0, Sin (2&Q) > 0, 
from (1.27) and (1.28), which means that 2nk > 26,ak < (2k+‘/&. For ak --> 00 we have 

fik --+ M from (1.27). therefore, sin (261ak) -+ 0 from (1. ‘28) for ak + 00 and ak = 

= kn&-’ + &k (ek > 0). From (1.27) we find 

p, = (2e1)-1 In 12kxe1-1sin 2e1] + ak* 

The quantities &k and Q* are on the order of O(k-1 Ink), taking account of the asymp- 
totics (1.26) we obtain 

Pf; = k&i,-’ -+ i(ae,)-1 In (2kne,-’ sin 281)fO(k-i ln k) (1.29) 

In the case of a conical cavity, i.e. for 1/Z n < 81 < x analogous reasoning will yield 

pjf) zzz 
(2k+l)n ’ 

+ & ln 
Pk + 1) fi 

22 2e1 - e1 sin 2& 1 + 0 (k-l Ink) (1.30) 

We denote the conjugate zeros in the right half-plane by v($ as before $,, = v$ -i- 
+ 3./,, @) = v$t) + 3/2. For 81 P.&z 4 1/2 JC the conjugate zeros go over into multiple real 
zeros, and then diverge into simple zeros. For definiteness it may be considered that 

IL&) > p$!i. 
Let us show that there are no other zeros for D,(v). Let us estimate the growth of 

the functions D3(v) and D&) along a closed contour composed of the four segments 
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At points RP tt = a of the horizontal segments (1.3B), taking account of the condition 

/ 9,a j < (x: -+ l)rc, we obtain 
1 D,JY) 12 -= (l-2 si,r “9,[9,‘$? :_ ‘r k”$ __ WCSC cos(&a)]--O(k In k) >, Or+ sin 30t 

(1 O,a i -_‘A3 )‘- O(k In ii) := O(??) 

It is seen from (1.24) that the modulus of the function D,(v) on the vertical segments 
is on the order of O(l). and grows as O(,Q!ln Jc) on the horizontal segments. Therefore, 

j U,{Y) ] > / /la(v) 1 on the whole countour chosen, and therefore, by the Rouche theorem 
an identical number of zeros of the functions D,(v), X(V) and U,(v) is contained within 

sufficiently large rectangles. In the half plane Kev > - “!? the modulus of a zero of 
the function Da (-v - “/2) is between the moduli of two successive zeros of the function 

DS (v - a,$) , and zeros of the function D:(v) are located symmetrically relative to 
1; 7.Z - “,I. From this and from the preceding conclusion it follows that for large v in 
the right half of a rectangle wherein the asymptotic formula (1.26) is valid. the func- 

tions IS&) and DQ(v)Ar(v) have an equal number of zeros to the accuracy of one zero, 

and that (1.291, (1. 30) are exhaustive. 

Let us introduce two groups of zeros according to (l-21), (1. 29) and two sequences 
&\.‘/ 1=: S$ Z S\!j Z a$; = lirrol-1 into each infinite product (1.18). The general term 
of the series, which converges together with the second product, hence becomes 

t4 pO1 
T$=-@---iz= 

E [0 (In Ic) + 0 (k-l In k)J 

[kd; ’ + i0 (In k)] k% 
-pO (k-2 In k) 

1t2 

for the first product uk = pO(k-?). Thus, both products converge absolutely, and (1.18) 

Ilere the function Q(Y) takes accountofa possible shift in the numbers of the zeros in 
the asymptotic formulas (1.41), (1.29) and (1.30) with respect to their true numbers. 

To investigate the growth of the function K*(Y) let us use the method of Al’perin [3, 

41. Let us introduce three absolutely convergent products 
ii 

IV,== n 
i 
1+ *j esI’ is) = f ‘$T;;-::’ ;;;q;r-l) (s = 1, 2, 3) (1.34) 

h‘=l 

in which we set 
b, = 0 for 6, < l/‘il~c, b, = 1t(26,)-~ for & > I/, JI (1.35) 

b, = - 1 + n(&i,)-1, b, = t -+ n(49J1, a, = I@,-~ for 0 < fI1 < x 

Let Ci,,, :: n,k + b,, and let us represent (I. 33) as 
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The first and second infinite products converge absolutely since the k th members of 
the corresponding series are of the orders of O(k-%ra k) and O(kma). The third product 
converges absolutely and uniformly in the right half plane Rev > - 2- x since by vir- 
tue of the inequalities 

we have 
1 kd,-’ + p 1 > knO,-l - 2, 1 kn0,-’ + p 1 > 1 p + 2 1 - 2 

IQl’ 1 k0 (k-l In k) + ~0 (k-l Ink) < 0 (Ink) 
I knh-1 + p 1” (kn&-I- 2)L 

+ O@;:lltk; + 0 (k-s In k) = 

= O(kSlnk) 

The fourth product, for which 1 uk 1 = O(kw2) is estimated by analogous means. It is 
not difficult to show that by virtue of the uniform convergence of these last two products 

in the whole right half-plane, their limit as Y -, m equals unity. Consequently, the con- 

sidered first part of (1.36) can be referred to the function q(v), 
Let us estimate the second part. Utilizing the asymptotic formula 

rtII,+4 
r(p++) =p 

a-b 1+ 1 (a 
2P. 

- b) (a + b - 1) + 0 (lj,-“) 
I 

according to (1.34) and (1.35) for 91 < 1/z rc we obtain 

MzMs_ r ("/a -- 
-0~0) r (51~ + bt-1) rz (i + pelo) 

M1" r ('I4 - elrt-1 + ghn-1) r (p31n-~ + cm-1 + v4) 1‘” (1) = 
= p-“2 [O (1) + 0 (b-l)] 

and this ratio has the order of O(p”‘) for Or > V2a-c. There remains to determine the 

quantity Q (Y). Let us substitute Y = - 3/z + ifi into (1.16). and let us replace the 

Legendre function by the asymptotics (1.22). After some manipulation we obtain for 
large values of p 

K (- % + iP) = $$ + 0 (i) (1.37) 

On the other hand, from (I. 17) and (1. 36) for e1 < i/z n we have 

[K(-%)(P + 1/~)l-‘K(-8/, + io) = [K+(- 3/2 + i@K+(--J/,.+9]- z 

= VP + Q/4 IQ-2 I + O(1) (1.38) 

Comparing (1.37) and (1.38). we find Q(v) and obtain from (1.36) 

K+ @) = 1’2 (1 - 4 K (-3/z) v + 0 (1) 

If= 
(1.39) 

We again arrive at (1.39) for 9, > Vz a-c by the same means. 
Let us return to the Wiener-Hopf equation (1.14) 

o+(v) K+(v) = K(--8/&-(Y)K-(~) (1.40) 

Since its left and right sides are regular in half-planes having a common strip - 2- 

- X < Rev < - 2, the function J(Y) introduced by the equality 

J(v) = u+(v)K+(v) = U-(v)K-(v)K(- s/2) (1.41) 

is regular in the-vplane. Let us investigate its behavior at infinity. Let us utilize rela- 
tionships connecting the asymptotics of the function and its Mellin transform 

if 0 s _ A (1 - r)” for r 4 1 - 0, then 

e+ (v) N Ar (q + 1) v-n-1 for v-+co, Rev>-2-x (1.42) 



if us --A (i----I)% for r -+ 1 + U, then 

u- (v) - Ar (rj + 1) P-1 for Y-+CCJ, Rev<-? 

Substituting the estimates (1.39) and (1.42) into (1.41) under the conditions (1.5), 

(1.6), we obtain J (Y) = 0 (VQ-Q ) for Y-+CQ, Rev>--_--_ 

J (v) = 0 (v ‘~2-f2) for v 3 00, Re Y < - 2 

Considering or < 1/2, eZ < 1f2 (otherwise the solution will be zero), we obtain J(Y) = C 
by virtue of the generalized Liouville theorem, and therefore, from (1.41) 

o+(Y) = c[K+(V)l-l (1.U) 

According to (1. a)-(l. lO),(l. 13) and the Mellin inversion theorem, the displacements 

and stresses are expressed as 

- (V +- 2)” (v + 5 - 45) Pi (~1) P.,_ (z)] rdve2 dv 

1 
Us=--- 

4fiGL s E (Y) [tz& (51) I’: (5) - (Y f 2) tP; (a) Pic2 (5) ] r’ “~ 2 dv 

L 

- (v -+ 2) P: (51) [(Y + 2) tlP,+, (5) + t ctg ep;,; (z)], r-v-3 dv 

z ro =A 
c 

E(Y) (Y + 2) tz [PLTz (m) P[I (5) -Pi (~1) pi?, (x)] rMvM3 dv 
a 

$ = - & 
c 

E (Y) (Y + 2) {(v + 1) 12 P;, 2 (21) Pv (t) - 

il 

- (Y + 2) [Y (Y + 3) + 4 - 46 (Y + 2)] PI, (21) & (s)) r-.--‘1-3 dv 

E(v) = Ct~K*(Y)D&)l-~ 

Integrating, L passes in the positive direction along the straight line Rev -= x0(- 
---x - 2 <x0 < - 2). 

We determine the constant C from the equilibrium condition. Let us examine the 
principal stress vector on a spherical surface r = p > i. Let us close the contour L in 
(1.44) by a system of semicircles rr passing between the zeros of the function D,(V) in 

the right half-plane. According to the Jordan lemma, the integrals on ?‘k tend to zero 

as k increases. Hence, by the Cauchy theorem, the stresses for + > 2 are expressed as 
the sum of residues with opposite sign, in the zeros vk2+ Since the magnitude of the prin- 
cipal vector is independent of p, the stresses reaching infinity will decreases as O(r-z), 
and each residue, except perhaps the residue at the point v = - 1, will yield self-equi- 
librated homogeneous stresses. Taking into account that the number V= --- 1 is a simple 
zero of all the numerators of the integrands in (1.44), and a double zero of the function 
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I&(Y) in their denominators, and utilizing the recursion formula (1.19) to resolve the 
corresponding indeterminacies, and the identities 

we obtain the displacements and stresses at infinity 

2Gu, = B 
4 (1 - a) 

I.-- 23 cos 0 -I--cos81. r 
.I 

~GIL,,= Bsin0 
1 +cos01 '3-443 

I+ cos 0 -1-_r I 

-54 = 

~sine(cos0 -Cosfh) 

i + cos e * Gr==B l+coso1-~cose 
[ 

S-223 

I 

etc., where 
C(1 - 25) sin 01 

B = K+ (-1) uz** (- 1) (I + cos 01) r” (1.45) 

I)~*+ (-1) = 2 sin 81 L (I- 
2 (I-t) 

1 23) - 1 + cost 81J (l.v3) 

The formulas written down agree to the accuracy of a factor B with the Mitchell [5] 
solution for an elastic cone compressed at the vertex by an axial force T. Comparing 
the Mitchell constant T (,I - 2a) 

B=2my[2-cosvll-(l-226)COSel(t-cCOSel)] 

with (1.45). we find 
T (I + cos el) K+ (--If a** C--1) 

‘= ~nsin8~[1-cos30~-(f-~)CoS01(l-~oS~l)t (1 AT) 

At the point v = - 2 the integrands in (1.44) for the stresses have removable singu- 

larities. The integrands for the displacements at this point have a simple pole generated 

by a simple zero of the numerator and a double zero of the denominator. Evaluating 
the residues by the same means as at the point Y = - 1, we obtain the constant displa- 

cements at infinity 
% 11 - 

-sin= 
-.L= 2 (1 - a) C sin e1 
cos 0 G [i + cos 0,) K+ (__ 2) Da,,** (__ 2) t . b** 1--‘) = - &+* (-‘I f”48) 

The displacements of the angular point of the cone are zero in the solution (1.44). 
Hence, (1.48) yields the magnitude of the axial displacement of a die (cap) subjected 

to the force 2’ 2c (1 - 6) sin 01 
a~ = - G (I+ cos 01) K+ (-2) DA** (-2) 

(1.49) 

under the condition that the displacement be zero at infinity. 
Let us investigate some contact zones. Let us find the normal stress distribution under 

the edge of the die (cap). According to bounda~ condition (1.3) ani expressions (1.11). 

(1.9),(1.43), (1.39). we have 
c vti 

,s+ (v) = a (v, 01) = C [K+ WI-’ - V2 c1 _ oI K (_~y for v --) W 

From this and from the assertion converse to (1.42) it follows: 

be_ I/~Jc(I---~)K(-~/~)(I-~) 
for 0 =Oi. r-t 1-O (1.X) 

Let us determine the shape of the free surface of an elastic body at the edge of the 
die (cap). From (I.. 42) for 8 = 8, we obtain 
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I c CdV 

“0 = 2rri ~ K- (v) K (_ 3,?) rv+2 (1.51) 

Here the contour L passes to the left of the poles of the integrand. Hence, we can 
make the substitution u = (v + 2) In r without extending it to L, and taking the straight 
line Re u = - 1 as path of integration L, in the u plane independently of the quantity 
r. For sufficiently small (r - 1) > 0 the modulus of v will be arbitrarily large on L, 

and the function K-(v) can be replaced by its asymptotics (1.17),(1.39). We hence 

obtain from (1. 51) c V/a(l-6)(r-1) 

I” - 2n 1/3GK (-3/s) L v l/v s 

eP dv 
(I 53) 

We replace the contour L, according to the Cauchy theorem and the Jordan lemma 

by a contour L, consisting of a two-bank slit along the positive semi-axis and along the 

circle j v ) = l/%. Utilizing the Hankel representation of the gamma function 

(es+’ - 1) r (9) = 5 e-“u+-l dv ($#O, - ,I,. . .) 

Lz 
we obtain the value of the integral in (1. 52) ag 4 1/T , and the formula for the normal 

displacement 
U0 - - C 

I/ 
8(I-_)(r--1) 

:irrG K (- 3/,) for El=&, t-*1+0 (I .X) 

Let us determine the stress at the cone vertex. Let us represent the solution (1.44) in 
residue series taken at the zeros of the function D1(v) lying in the half-plane Rev < - 2. 
According to (1.15) and the equalities 

P,‘(zl) - - l/zV(v + 1) sin O1 for x1-+ 1, P_?’ (Xl) = - sin @, 

P_,‘(z,) = - 3/2 sin 20, 

the first zero y1 is in the interval (-3, -2) for 8,> I’? n and 1~~ = - 3 for 9, < lizn . 
In the first case the stresses at the cone vertex are infinite, and in the second Case are 
finibe dH = Cr ” -“cYK+ (v) / c3v \+,,, for 01>l/zZ, r--+0 

2CG (1 + a) sin 81 
(1.5$) 

‘0 = ‘r - 3 (5 - 1) K (- 3/4 K- (-:i) (1 - cos 9,) for &<%n, r-+0 

Since K’(- 2) > 0, then r/K+(v) / clv > 0 for v :: v’l , It follows from the inequalities 

K+(-I) > 0 and Dz**(- 1) < 0 that C < 0 forT > 0. Taking these signs as well as tile 

signs of the functions K( - s/z) > 0 and K-(- 3) < 0 into account,we obtain UB < 0 from 
(1. 50) and (1.54). i. e. compressive stresses originate under the edge of a die and at the 
cone vertex. The question of the nature of the normal stresses in the remaining part of 
the contact surface remains open, although it seems intuitive that an elastic cone will 
adhere compactly everywhere to the cap, and the solution is actually realized. 

2. In the case of the half-space (0, = I/+) the function K(v) becomes 

K(Y,=_ G(I+v)(2+v)r(--‘/z~)r(~/z+~/1~~) 
2 (1 - 6) r (2 + l/ZV) r (‘/Z - l/D) 

and it is expedient to make another, simpler factorization in place of (1.17): 

K- (4 
K 09 = K+ (,,) 3 

r (2 _t lhv) 
K’ (V) = 1’ pi2 + l/zq f K- W = - 

G(l+v)(:!+v)r(-%v) (c, ,) 

2 (1 _ q r (lj2 - +v) _. 
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The formulas of the preceding section hence remain valid ; it is only necessary to 

assume K(-- “/,) = 1 therein. For example, evaluating the functions 

&**(-2) = 2, K+(- 2) = h’lt, c = - T[4 J&]-1 

actor ding to (1.46). (2.1),(1.47), and substituting them into (1.49), we obtain the known 
formula for the indentation of a flat circular die into an elastic half-space 

u,, = T(1 - a) [4n G]-1 

The normal stress distribution under the die is also found easily from (1.44) 

1 
c 

Tr-Y-3 dv T 
5 

r--y-3 &, 

‘~=-~~ 4 Jf;K+(,,) =siL cos (‘/zfiv) r (2 + l/ZV) r (l/z. - ‘/ZV) 
= 

In conclusion, the author is grateful to Ia. S. Ufliand for discussing the research, and 
for useful remarks. 
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Some torsional problems are investigated which can be solved in ellipsoidal coordinates 

using the Mehler-Fock transformation, specially generalized for the case of an incom- 
plete interval. The proof of the relevant inversion formula is given. 

1. Formulation of the problem and ito general 8olutfon. Let us 
consider the torsion of a two-sheeted hyperboloid of revolution, truncated at its top by 

an ellipsoidal surface. In degenerate ellipsoidal coordinates 
r = c sh CL sin fl, z = c chu cos j3 (1.1) 

the body which we consider occupies the region delineated by a, < a < 00 ,O < fi < PO* 
If the single component of an elastic displacement v 3 u,(aifi) is taken as the basic 

unknown function, the problem is reduced to solving the equation p] 


